SEPIGEL™ H 200 LWT

Ultimate signal transmission protection

Ingredients that inspire
SEPIGEL™ H 200 LWT

Filling gel for fiber optic cables that protects its useful lifetime.

Chemical protection:
With efficient hydrogen scavenger agents, it helps to improve the fiber optic cable reliability.

Mechanical protection:
Sepigel H 200 LWT is a thixotropic gel:
• Fluid under stress for convenient manufacturing conditions:
 - Easy to pump at room temperature.
 - Easy to inject into the cable.
• Viscous at rest:
 - As soon as the filling gel is introduced into the cable, it regains its viscosity.
 - Provides mechanical protection to the fiber optic cable while still allowing its free movement so there are no constrains that could cause damage.
Table of contents

Introduction 2
Fiber optic cable useful lifetime 4
SEPIGEL™ H 200 LWT 6
General description 6
Specifications 7
Properties 9
Packaging and labeling 12
The light impulses travel along the optical fiber made mainly of pure amorphous silica a-Si. The objective is to minimize the signal attenuation. In order to do so, the silica must be protected to remain undamaged during the manufacturing, installation and useful lifetime of the cable.

The filling compound SEPIGEL H 200 LWT is the ultimate protection of the fiber as it surrounds it at the core of the cable.

SEPIGEL H 200 LWT:

1. Facilitates the process of introducing fibers into the stainless steel tube.
2. Protects the fibers from mechanical stress.
3. Prevents chemical attack of the fiber optic cable by water, oxygen or hydrogen.

A major consequence of hydrogen presence in the fiber optic cable is an increase of signal attenuation, particularly for signals being transmitted with wavelengths over 1 µm. The signal may be disturbed in different ways:

- Hydrogen, when diffused into the optical fibre, is able to absorb energy, with an adsorption spectrum comprising the wavelengths covered in the optical signal.

- Hydrogen can react with the silicon or with some components of the fiber used as dopants: SiO₂, GeO₂ or P₂O₅. Causing unacceptable increase in attenuation.
SEPIGEL H 200 LWT has been the reference filling gel used since 1994 by the major producers of fiber optic cables.

Hydrogen may be generated from parts of the cable itself or from external sources. During manufacturing, it is generated during the laser welding process. Once the cable is installed, hydrogen may be released over the years from the chemical degradation of metallic or plastic materials that oxidize in presence of water.

Hydrogen diffuses easily through most materials. Once hydrogen is inside the fiber optic cable, although it diffuses easily, the rate of elimination is highly reduced because of the presence of a lot of impermeable barriers such as plastic sheaths or metallic tubing. Also, diffusion of hydrogen out of the cable depends on surrounding conditions. Air produces a negligible resistance for optical ground wires but for water proof cables such as submarine cables, high pressures in the deep sea environment prevents hydrogen diffusion out of the cable. Partial pressure of the H_2 increases and the result is an increase of the amount of interstitial hydrogen that may reach the optical fibers. The higher the partial pressure is, the longer the fiber is exposed to hydrogen and the greater is the risk of damage. Therefore, an efficient hydrogen scavenger is needed for an optimal signal transmission and to guarantee the durability of the fiber optic cable.

SEPPIC’s filling compound SEPIGEL H 200 LWT prevents the hydrogen from reaching and irreversibly damaging the fiber optic cable though two mechanisms:

1. Adsorption of the hydrogen by the metal catalyst compounds dispersed in the gel. All together, the SEPIGEL H 200 LWT contains the highest concentration of hydrogen scavenging agents among the filling gels on the market.

 $X + H_2 \rightarrow [X]H_2$

 Metal catalyst included in SEPIGEL H 200 LWT
 Metallic Hydrate trapped inside SEPIGEL H 200 LWT

2. Hydrogenation of unsaturated carbon bonds present in the gel.

 $\text{SEPIGEL H 200 LWT hydrogen scavenger agents}$
SEPIGEL™ H 200 LWT

General description

- Filling compound for fully sealed fiber optical cables.
- Contains efficient hydrogen scavenging agents, providing a high hydrogen adsorption capability to extend the cable’s useful lifetime.
- Hydrophobic and thixotropic gel to simplify the injection during the production of the cables.
- Easy to pump even at room temperature. The most convenient pumping unit is a Multi Piston Pump (MPP), as it is able to deliver a constant flow at high pressures.
- Produced since 1994 at the SEPPIC’s site located in Castres, France, which is qualified ISO14001, ISO9001, and OHSAS 18001.
The Certificate of Analysis (COA) issued with each delivery guarantees the following characteristics:

- **Appearance**: black compound with a soft grease consistency.
- **Oil bleed and volatility** is the loss in weight by bleeding and evaporating at a temperature of 150°C (302°F).
- **Cone penetration** is the depth reached by a standard metallic cone released under given conditions of temperature. Measurements are performed at 25°C (77°F) on a sample that has been worked, which means that the gel has been under continuous movement. Once at rest, sample of worked-product is analyzed straight away and the another one after 24 hours at rest.
- **Plastic viscosity** is the viscosity measured with a rheometer at the highest possible speed (shear rate). This condition roughly corresponds to the one during injection of the filling compound into the cable. The measurement is done at controlled temperature of 25°C (77°F).
- **Hydrogen adsorption** is measured by the loss of pressure within 24 hours inside a sealed tube filled with hydrogen containing SEPIGEL H 200 LWT at standard temperature and pressure (STP).

Specifications

<table>
<thead>
<tr>
<th>CHARACTERISTIC</th>
<th>CONDITIONS</th>
<th>SEPPIC METHOD</th>
<th>SPECIFICATION</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>-</td>
<td>Visual</td>
<td>Black soft grease</td>
<td>-</td>
</tr>
<tr>
<td>Oil bleed</td>
<td>24h - 150°C (302°F)</td>
<td>52 - 129</td>
<td>0.6 max</td>
<td>%</td>
</tr>
<tr>
<td>Volatility</td>
<td>24h - 150°C (302°F)</td>
<td>52 - 129</td>
<td>3 max</td>
<td>%</td>
</tr>
<tr>
<td>Cone penetration</td>
<td>worked product</td>
<td>52 - 128</td>
<td>350 - 410</td>
<td>1/10 mm</td>
</tr>
<tr>
<td></td>
<td>worked + 24 hours</td>
<td>52 - 128</td>
<td>340 - 400</td>
<td>1/10 mm</td>
</tr>
<tr>
<td>Water content</td>
<td>-</td>
<td>52 - 099</td>
<td>400 max</td>
<td>ppm</td>
</tr>
<tr>
<td>Hydrogen adsorption</td>
<td>After 24 hours at STP</td>
<td>52 - 228</td>
<td>0.5 - 2.0</td>
<td>ml/g</td>
</tr>
<tr>
<td>Plastic viscosity</td>
<td>25°C (77°F)</td>
<td>52 - 229</td>
<td>1.5 - 3.0</td>
<td>Pa.s</td>
</tr>
</tbody>
</table>
CONE PENETRATION

TYPICAL CHARACTERISTICS

- **Acid value**: expresses content of free mineral or organic fatty acid. It is calculated in milligrams of potassium hydroxide (KOH) required to neutralize free fatty acid in 1 gram of product.
- **Dropping point**: the gel is in a cone that is heated up until the gel falls down.

<table>
<thead>
<tr>
<th>CHARACTERISTIC</th>
<th>METHOD</th>
<th>SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total hydrogen adsorption</td>
<td>58 016</td>
<td>3.5 to 4 cm3 H$_2$/g of Sepigel H 200 LWT at STP</td>
</tr>
<tr>
<td>Acid value</td>
<td>52 1904</td>
<td>< 0.6</td>
</tr>
<tr>
<td>Dropping point</td>
<td>NFT 60 102 - ASTM D 566</td>
<td>Approx. 200°C</td>
</tr>
<tr>
<td></td>
<td>NFT 60 103 - ASTM D</td>
<td>Approx. 392°F</td>
</tr>
<tr>
<td>Flash point (closed up)</td>
<td></td>
<td>>150°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>300°F</td>
</tr>
<tr>
<td>Electrical conductivity</td>
<td>Conductimeter (WTW and 325/S electrode)</td>
<td>0.00 µS/cm</td>
</tr>
</tbody>
</table>

Seppic methods are derived from NFT or ASTM protocols; if you require further details, please contact us at PerformanceMaterials.SEPPIC@AirLiquide.com
Properties

ADSORPTION OF HYDROGEN

Total hydrogen adsorption of 1 gram of **SEPIGEL H 200 LWT** is between 3.5 to 4 cm³ in experimental conditions. Those are indicative values which can slightly differ according to experimental devices, amount of sample in the device and surface state of the sample. However they clearly show the high hydrogen adsorption capacity of the **SEPIGEL H 200 LWT**. It has an immediate capacity of adsorption of hydrogen to protect the fiber from the hydrogen generated during manufacturing.

CM³ OF VOLUME OF HYDROGEN ABSORBED PER GRAM OF SEPIGEL H 200 LWT

The filling gel **SEPIGEL H 200 LWT** also has a continuous capacity of hydrogen scavenging to protect the fiber during the cable’s lifetime.
RHEOLOGICAL PROPERTIES

The **SEPIGEL H 200 LWT** is a thixotropic gel. Its plastic viscosity is given as the slope of the following curve of controlled shear stress (τ) versus measured shear rate (γ). The **SEPIGEL H 200 LWT** has a high plastic viscosity gel with values between 1.5 – 3.0 Pa.s.

PLASTIC VISCOSITY vs SHEAR RATE

At high shear rate, when stress applied to the gel, it is fluid. Therefore the **SEPIGEL H 200 LWT** is easy to pump during the manufacturing of the cable. **SEPIGEL H 200 LWT** is viscous at rest to provide mechanical protection to the optical fiber but still allow a bit of movement.

SHEAR STRESS vs SHEAR RATE AT DIFFERENT TEMPERATURES

Even at 80°C the **SEPIGEL H 200 LWT** is viscous at rest (low shear rate); hence, the fiber is mechanically protected even at this temperature.
The viscosity of the **SEPIGEL H 200 LWT** decreases as the temperature rises.

VISCOSITY vs TEMPERATURE

![VISCOSITY DEPENDING ON TEMPERATURE](image)

The relative density or specific gravity is measured with a picnometer on a 50 ml filling compound sample. It decreases as temperature rises.

RELATIVE DENSITY vs TEMPERATURE

![RELATIVE DENSITY](image)
To keep SEPIGEL™ H 200 LWT in optimal conditions, drums must be kept tightly closed when they are not used.

SEPIGEL H 200 LWT is not a hazardous material, it does not contain Substances of Very High Concern (SVHC) and it is not corrosive.

It is packed in epoxy coated smooth sided steel drums, palletized and shrink wrapped:
- **Internal diameter:** 570 mm
- **Net weight:** 160 Kg

Drums are marked as follows:
- Name and address of supplier
- Product’s reference
- Net weight in kilograms
- Batch number
- Legal labeling

For any additional information, please contact our technical department:
PerformanceMaterials.SEPPIC@AirLique.com

M. Parás Hernáiz - SEPPIC SA, Paris, France +33 (0) 1 42 91 41 10
R. McKay - SEPPIC Inc, New Jersey, USA + 1 (973) 882 55 97

The information set forth herein is furnished in good faith and is based on technical data that SEPPIC believes to be reliable. It is intended for use by persons having technical skill and at their own discretion and risk. Since conditions of use are outside our control, we make no warranties, expressed or implied, and assume no liability in connection with any use of this information. Nothing herein is to be taken as a license to operate under or a recommendation to infringe any patents.
Nota:
The analytical specifications warranted are only those mentioned on the certificate of analysis supplied with each delivery of the product. Except as set forth above, SEPPIC* makes no warranties, whether express, implied or statutory, as to the product which is the subject of this document. Without limiting the generality, of the foregoing, SEPPIC* makes no warranty of merchantability of the product or of the fitness of the product for any particular purpose. Buyer assumes all risk and liability resulting from the use or sale of the product, whether singly or in combination with other goods. The information set forth herein is furnished free of charge and is based on technical data that SEPPIC* believes to be reliable. It is intended for use by persons having technical skill and their own discretion and risk. Since conditions of use are outside SEPPIC*’s control, SEPPIC* makes no warranties, express or implied, and assumes no liability in connection with any use of this information. Nothing herein is to be taken as a license to operate under or a recommendation to infringe any patents.

Air Liquide Healthcare is a world leader in medical gases, home healthcare, hygiene products and healthcare specialty ingredients. It aims to provide customers in the continuum of care from hospital to home with medical products, specialty ingredients and services that contribute to protecting vulnerable lives.

*SEPPIC being:

SEPPIC S.A.
22 Terrasse Bellini
Paris La Défense
92806 Puteaux cedex - France
Tel. + 33 (0)1 42 91 40 00
info.seppic@airliquide.com

SEPPIC Castres
FRANCE
Tel. + 33 (0)5 63 72 69 69

Head Office
75, quai d’Orsay
75007 Paris
FRANCE

© 2015 SEPPIC
SEPPIC is a subsidiary of the AIR LIQUIDE group

SEPPIC Inc.
USA
Tel. + 1 973 882 5597
us.seppic@airliquide.com

SEPPIC Brasil
BRASIL
Tel. + 55 11 3242 3911
brasil.seppic@airliquide.com

SEPPIC Asia Singapore
SINGAPORE
Tel. + 65 6286 7711
singapore.seppic@airliquide.com

SEPPIC Colombia SAS
COLOMBIA
Tel. + 571 702 44 48
colombia.seppic@airliquide.com

SEPPIC India
INDIA
Tel. + 91 22 6104664
india.seppic@airliquide.com

SEPPIC China
CHINA
Tel. + 86 (21) 6466 01 49
china.seppic@airliquide.com

SEPPIC Dubaï Office
UNITED ARAB.EMIRATES
Tel. + 971 (4) 239 55 65
dubai.seppic@airliquide.com

SEPPIC Polska S.A.
POLAND
Tel. + 48 22 690 68 73
poland.seppic@airliquide.com

SEPPIC Italia Srl
ITALY
Tel. + 39 02 38009110
italy.seppic@airliquide.com

SEPPIC GmbH
GERMANY
Tel. + 49 (0) 221 8888 24-20
germany.seppic@airliquide.com

SEPPIC Colombia SAS
COLOMBIA
Tel. + 571 702 44 48
colombia.seppic@airliquide.com

SEPPIC India
INDIA
Tel. + 91 22 6104664
india.seppic@airliquide.com

SEPPIC China
CHINA
Tel. + 86 (21) 6466 01 49
china.seppic@airliquide.com

BIOTECHMARINE
FRANCE
Tel. + 33 (0)2 96 95 31 32
contact.biotechmarine@airliquide.com

© 2015 SEPPIC
SEPPIC is a subsidiary of the AIR LIQUIDE group

seppic.com